Die N.E.R.D.-Aufgabe für den März ist online!

Diesmal geht es um Wahrscheinlichkeiten.

Anton und Alexandra werfen wiederholt eine faire Münze. Bei Kopf gewinnt Anton einen Punkt, bei Zahl Alexandra.

Das Spiel endet, sobald einer der beiden einen Vorsprung von drei Punkten hat und damit als Sieger feststeht.

Zu einem bestimmten Zeitpunkt führt Alexandra mit einem Punkt. Wie groß ist in diesem Augenblick ihre Gewinnwahrscheinlichkeit?

Dieses Bild hat ein leeres Alt-Attribut. Der Dateiname ist Bild.jpg

Eure Überlegungen könnt ihr wie immer per Mail an mich schicken (rainer.durdaut@t-online.de).

Es winken erneut neben Ruhm und Ehre wertvolle Punkte.


Die Lösung erscheint hier gegen Ende des Monats März.

Schokolade essen und die Welt fair-bessern?

Die Misereor-AG zeigt, wie’s geht!

Unter dem Motto „Schoko-Power: Taten statt leerer Worte“ nahmen die Mitglieder der Misereor-AG zunächst an einem Online-Workshop im Rahmen der GEPA-Erlebnistage teil. GEPA ist eine Organisation, die sich für faire Bedingungen in der Produktion von Lebensmitteln einsetzt, weil das heute leider nicht selbstverständlich ist. Ausgehend von den Fragen, was eigentlich in einer Tafel Schokolade steckt und was das alles mit Fairness zu tun hat, beschäftigten wir uns mit dem Weg des Kakaos vom Baum bis zur Schokolade. Dabei erfuhren wir Interessantes über die Arbeitsbedingungen der Kakaobauern und wie durch faire Schokolade neue Maßstäbe in der Kakaoproduktion gesetzt werden. So kann durch einen fairen Kakao-Preis zum Beispiel Kinderarbeit verhindert werden.

Um uns über die verschiedenen Produkte zu informieren und einige für einen Pausenverkauf an unserer Schule auszuwählen, führte uns unser nächster Weg in einen Weltladen nahe der Konstablerwache. Der Inhaber zeigte uns das große Angebot an fairen Süßigkeiten sowie Kakaoprodukten und wir erfuhren einiges über die Vergleichbarkeit von Lebensmittelsiegeln. Natürlich durfte auch ein Testen der Produkte nicht fehlen!

In den beiden Wochen vor den Weihnachtsferien sollten unser Wissen und die gesammelten Informationen nun endlich in einer Aktion umgesetzt werden: Bei einem Pausenverkauf boten die Mitglieder der AG und weitere helfende Hände der Schulgemeinde GEPA-Produkte wie Schokoriegel, Tee, Kakao und Kaffee an. Für unseren zweiten Verkaufstermin mussten wir sogar noch einmal Ware nachbestellen – mit solch einer großen Nachfrage hatten wir nicht gerechnet. Insgesamt wurden ca. 160 € an ein Misereor-Projekt für Kakaobauern an der Elfenbeinküste gespendet. Danke für euren Einkauf und eure Spende!

Für die MISEREOR-AG

Anna-Lena Rover

Das traditionelle kleine Quiz zum Tag der offenen Tür und zum Grundschulelternabend!

Auch in diesem Jahr veranstaltet das HvGG anlässlich des Tages der offenen Tür und der Grundschulelternabende ein kleines Quiz, zu dem alle potentiellen neuen Gagern-Schüler und -Schülerinnen und natürlich auch ihre Eltern herzlich eingeladen sind.

Zu jeder der folgenden 12 Fragen gibt es 4 Antwortmöglichkeiten, von denen jeweils immer genau eine korrekt ist. Wer mitmachen möchte, schickt mir einfach per E-Mail (rainer.durdaut@t-online.de) die Folge der 12 Lösungsbuchstaben. Gebt dabei bitte euren Namen, eure Adresse und den Namen eurer Grundschule an. Die Sieger erhalten alle einen kleinen Preis und das Recht, darüber mitzuentscheiden, ob unser Schulleiter seinen Bart behalten darf.

Einsendeschluss ist Sonntag, der 13. Februar 2022 um 23.59 Uhr.

Und jetzt viel Spaß.

Frage-1:

Frage-2:

Frage-3:

Frage-4:

Frage-5:

Frage-6:

Frage-7:

Frage-8:

Frage-9:

Frage-10:

Frage-11:

Frage-12:

Die stromlinienförmigen Modelle im Windkanal

Ein Bericht des Leistungskurses Physik 2022

Die Aufgabenstellung:

Bauen Sie ein Auto, welches einen möglichst geringen Luftwiderstand 

(cw-Wert) im Luftkanal aufweist. Bilden Sie dazu Teams von 2-3 Personen.

Wichtige physikalische Größen:

 – Luftwiderstand(F(L))

 – cw-Wert (individueller Wert)

 – Querschnittsfläche(A)

 – Luftgeschwindigkeit(v)

 – Luftdichte (p(Luft))

Materialien:

 – Knete zum Bauen der Autos

 – Windkanal

 – Schaschlikspieße zum Aufspießen der Autos und Halten vor den Windkanal

 – Kraftmesssonde Cassy von LD-Didaktik zum Messen des Luftwiderstandes

 – Glasröhre zum Fokussieren der Luft

Das Experiment

A. Messung der Luftgeschwindigkeit

Zu Beginn wissen wir nicht, wie wir die Luftgeschwindigkeit messen. Es existieren aber einige Ideen. Diese Gruppe beschäftigt sich mit einem Experimentaufbau zur Messung der Luftgeschwindigkeit und der Durchführung der Messung.

Ein Bericht von Tushar und Quentin

Als erste Idee wird die Nutzung eines Anemometers vorgeschlagen. Dies ist in der Lage, eine Strömungsgeschwindigkeit auf einfachste Weise zu messen: die Umströmung einer beheizten Messsonde sorgt für einen Wärmetransport in das Strömungsmedium. Da dies von der Windgeschwindigkeit abhängt, kann auf die Geschwindigkeit geschlossen werden. In einer anderen Bauart, wird die Strömungsgeschwindigkeit mithilfe der Drehung eines Windrads gemessen. Die Schule besitzt aktuell jedoch kein Anemometer, weshalb wir wie folgt vorgegangen sind:

Wenn man ein durchsichtiges Rohr am Ausgang des Windkanals befestigt und mit einem Video einen hindurchfliegenden Gegenstand aufnimmt, kann man das Video in die NewtonDV-App importieren und mithilfe der App die Geschwindigkeit ermitteln. Da der Gegenstand leicht genug und gut erkennbar sein muss, wollen wir farbigen Glitzerstaub verwenden. Der Anfang oder das Ende, der beim Start des Windkanals entstehenden Glitzerwolke, können als Messpunkt verwendet werden. Da kein Glitzer vorhanden ist, entscheiden wir uns dazu, das Ganze mit Rauch zu versuchen. Doch auch diese Idee wird aufgegeben, da der Rauch erstens nicht klar sichtbar ist und zudem nicht effizient genug durch die Windturbine in das Glasrohr gelangt. Letztendlich entscheiden wir uns dazu, unsere Messung mit Wattebällchen durchzuführen.

Folgende Probleme sind dabei aufgetreten: Unser Gedanke ist, die Bällchen von hinten hinein, an den Rotorblättern vorbei und dann vorn durch die Röhre raus fliegen zu lassen. Allerdings kam es am hinteren Ende der Turbine zu solch einem Wirbel, dass die Bällchen bloß zur Seite weg gewirbelt wurden. Aus diesem Grund müssen wir umbauen: am Ende des Glasrohrs wird ein zweites Glasrohr aufgebaut und die beiden Rohre durch ein Blatt Papier voneinander getrennt.

Die Wattebällchen werden in das erste Rohr reingelegt. Dann wird das Rohr mit einem Blatt abgedeckt, die Windturbine angeschlatet und bis auf ihre Maximalgeschwindigkeit beschleunigt. Nun ziehen wir das Papier schnell raus und die Wattebällchen fliegen von einem Rohr durch das andere. In dem zweiten Rohr wird ihre Bewegung über eine Slowmotion-Kamera aufgenommen.

Die Analyse des Videos in der App zeigte eine Windgeschwindigkeit von ca. 2 Meter pro Sekunde.

In der Nachbesprechung sind wir nochmals auf die Messung der Luftgeschwindigkeit eingegangen und kamen nach der Realisierung, dass die Messungen nicht sehr genau sind, zu dem Schluss, dass eine Erweiterung der Physiksammlung durch ein Anemometer für die folgenden Jahrgänge eine bereichernde Erleichterung wäre.

B. Messung der Kraft

Die ersten Probemessungen sind mit Problemen verbunden, da das Messinstrument die Messung beeinflusst. Diese Gruppe beschäftigt sich mit dem Experimentaufbau, bei dem die Luftwiderstandskraft möglichst exakt gemessen werden kann.

Ein Bericht von Hendrik und Lasse

Eine akkurate Kraftmessung war aufgrund mehrerer Faktoren eine Herausforderung:


Einerseits stellt das Messegerät selbst oft ein Problem dar. Einen mechanischen Newton-Messer in solch einem Aufbau sinnvoll zu benutzen, ist sehr schwer und akkurate Ergebnisse abzulesen fast unmöglich. Wir entschieden uns deswegen für einen elektronischen Kraftmesser [1], den wir vielseitiger einsetzen konnten und der keine beweglichen Teile hatte, weshalb wir die Experimente leichter durchführen konnten. Er ermöglichte es uns außerdem, akkuratere Ergebnisse abzulesen (mehr dazu bei der Gruppe Datenaufnahme und Datenverarbeitung).

Von Anfang an war uns klar, dass der schwierigste Faktor die Eliminierung der Extra-Kraft, die durch den Druck des Windes auf dem Kraftmesser oder andere Gegenstände, an denen das Auto befestigt ist, entstehen würde. Wir leiteten die Luft deswegen durch ein langes Glasrohr [2], um es stärker auf das Auto zu konzentrieren und so zu vermeiden, dass die Luft auf den elektronischen Kraftmesser selbst drückt, denn der eigentliche Luftauslass der Turbine [4] war sehr breit. Außerdem setzten wir ein Verbindungsstück [3] ein, um das Auto noch weiter vom Kraftmesser zu entfernen. Weil wir befürchteten, dass dieser das Ergebnis verfälschen könnte, denn das Auto wurde nun nicht gerade nach hinten auf den Kraftmesser gedrückt, benutzten wir einen mechanischen Newton-Messer und verglichen die Kraft, die wir mit diesem ausübten, mit der, die uns das Programm anzeigte.

Der mechanische Kraftmesser erlaubt uns, eine Kraft von sehr genau 0.5 Newton (was ungefähr einem Gewicht von 50 Gramm, also einer halben Tafel Schokolade entspricht) auf das Verbindungsstück auszuüben. Diese Kraft wird wiederum vom elektronischen Kraftmesser gemessen und unterschied sich dabei nur minimal. Das Verbindungsstück verfälschte also nicht die Messung.

Wir mussten ebenfalls überlegen, wie wir die Autos an dem Verbindungsstück befestigten. Wir entschieden uns schließlich für Schaschlik-Spieße, diese konnten problemlos in die Autos gesteckt und dann mit einer Schraube am Verbindungsstück befestigt werden. Bei der ersten Messung fiel uns allerdings auf, dass die Kraft konstant zunahm. Die Knetautos waren relativ weich und beugten sich deshalb mit der Zeit nach vorne, wodurch die Stirnfläche höher wurde und der Wind somit mehr Fläche hatte, gegen die er drücken konnte. Wir legten sie deshalb vor den Messungen in den Kühlschrank, damit sie währen der gesamten Messung (die wir dreimal durchführten, um die Genauigkeit zu erhöhen) gleich gerade blieben.


Zuletzt legten wir fest, dass zwischen Rohr und Auto ein Fingerbreit Patz sein muss, damit die Messung bei allen Autos gleich verlief und keines mehr Kraft als die anderen erfuhr, weil die Luft noch schneller und konzentrierter war. Außerdem markierten wir die Stellen, an denen die Stützen auf dem Tisch standen, mit einem Bleistift, um einen fairen und wiederholbaren Aufbau zu sichern.

C. Datenaufnahme, Datenverarbeitung

Die anfallenden Daten zur Kraft-Zeit-Messung müssen verarbeitet werden und allen Teilnehmer zur Verfügung gestellt werden. Diese Gruppe beschäftigt sich mit dieser Aufgabe. 

Ein Bericht von Jakob

Nachdem ich das Messgerät über mehrere Adapter mit meinem Laptop verbunden hatte, hatte ich dennoch das Problem, dass man die Daten nicht ohne weiteres einlesen konnte. Jedoch nach längerer Suche fand ich endlich das Programm “Cassy Lab 2”, womit ich endlich die Messdaten des Kraftmessers gut und sehr genau lesen konnte. Wenn man nun mit dem Messen beginnt, wird ein Kraft/Zeit Diagramm, in dem alle 10ms die Kraft aufgezeichnet wird. 

Wie man hier sieht, sind enorme Schwankungen vorzufinden, weshalb es sehr schwierig war, einen sinnvollen Wert auszuwählen. Die Lösung dazu war eine Funktion in der Software, mit der man den Durchschnitt über ein gewähltes Intervall berechnen lassen kann (die schwarze Linie bei ca. -0,08). Dabei habe ich immer ein Intervall von 10s Länge genommen (meistens von 10 – 20). Nachdem wir diesen Mittelwert hatten, haben wir ihn einfach in eine Tabelle an der Tafel eingetragen, wo jeder ihn sehen konnte.

D. Theoretische Grundlagen.

Wie berechne ich den Luftwiderstand? Was muss gemessen werden? Wie messe ich die Stirnfläche A? Die wichtige Formel ist einfach, daher entwickelt diese Gruppe ein Verfahren zur Messung der Stirnfläche.

Ein Bericht von Konstantin, Thoralf, Caspar

Die Formel für den Luftwiderstand rauszufinden, war keine schwere Sache. Die Luftwiderstandskraft lässt sich berechnen durch die Formel F(L)=0,5*cw*A*v2*p(Luft). Mit der konstanten Luftgeschwindigkeit von 2 Meter pro Sekunde und einem konstanten p(Luft), hängt die Aerodynamik maßgeblich von ihrem cw-Wert und ihrer Querschnittsfläche ab. Da wir die Kraft berechnen können, beurteilen wir die Form des Autos anhand des cw-Wertes. Um letzteres herauszufinden, brauchen wir jedoch die Querschnittsfläche. Um die Querschnittsfläche zu messen, haben wir eine gerichtete Lampe in einer bestimmten Höhe über einem Tisch angebracht. Unter ihr haben wir zunächst eine Höhe festgelegt, in der die Autos zur Messung ihrer Querschnittsfläche angebracht werden sollen. Von dieser Höhe aus haben wir nun mit Hilfe eines karierten Blattes den Maßstab des geworfenen Schattens bestimmt. Nun konnten wir von der Größe des durch die Autos geworfenen Schattens auf die Querschnittsfläche der Autos schließen.

E. Das Turnier

Um die zum Wettkampf um das stromlinienförmigste Auto antretenden Gruppen mit Vorgaben zu versorgen, benötigt man klare Regeln. Diese Regeln können nicht aufgestellt werden, ohne dass man die Physik und die experimentellen Unwegsamkeiten versteht und überblickt. Diese Gruppe beschäftigt sich also mit dem Thema der Vergleichbarkeit der Ergebnisse und stellt Regeln für den Wettbewerb auf.

Ein Bericht von Jonas und Lorenz


Wir haben uns auf die drei oben aufgeführte Regeln geeinigt, um einen möglichst fairen und vergleichbaren Wettbewerb zu gewährleisten. Im Folgenden werden wir die Gründe, die für jeden Punkt sprechen, erläutern.

  1. Da die Größe der Angriffsfläche bei der Berechnung des cw-Werts von elementarer Rolle ist, haben wir uns für eine mindestens 4cm^2 Angriffsfläche entschieden. Ohne diese Regel, wäre es möglich, so kleine Autos zu bauen, dass die Messapparatur einen Großteil des Luftwiderstands ausmachen würde und somit die Messergebnisse verfälscht werden würden. 
  2. Die Gleichheit der Masse von allen Autos, folgt aus der Überlegung, dass je mehr Knete man zur Verfügung hat, es desto einfacher wird, die gewünschte Form des Autos zu erzielen. Deshalb haben wir die Regel festgesetzt, dass jeder genau gleich viel Knete hat. Dass man nicht weniger zur Verfügung hat, liegt am gleichen Grund wie in 1. beschrieben.
  3. Da wir bereits vor dem Experiment wussten, dass die Tropfen-Form den geringsten cw-Wert aufweist und wir Autos bauen wollen, ist diese Regel nur logisch. Da es aber eben nicht nur die eine typische Form von Autos gibt, ist diese Regel schwer zu formulieren. Wir befragten also außenstehende Personen, was sie denken, was die Knete darstellen soll. Sollten diese nicht „Auto“ antworten, ist das Team disqualifiziert, bekommt jedoch nochmal die Chance, das Auto anzupassen.
  4. Während der Durchführung der Messungen ist folgendes Problem aufgetreten: Jedes Auto wurde leicht unterschiedlich angebracht und selbst wenn wir den Luftwiderstands des gleichen Autos mehrmals gemessen haben, ergab es verschiedene Ergebnisse. Wir einigten uns also darauf, jedes Auto dreimal aufzubauen und den Luftwiderstand zu messen. Als finales Ergebnis nehmen wir den Durchschnitt der drei Messungen. Somit sollten Fehler im Aufbau oder der Messung nicht mehr so stark ins Gewicht fallen.

Die Fahrzeuge

Project Swance von Lorenz Bode und Konstantin Plischke

Project Swance wählt eine grundlegend neue Weise, an den Bau eines Sportwagens heranzugehen. Durch bahnbrechende Technologie soll ein nie dagewesenes Maß an Aerodynamik mit Seitenwindstabilität, stromlinienförmigem Design und exzellentem Fahrerlebnis kombiniert werden, um ein Gesamtpaket zu schaffen, das selbst den Asphalt zum Staunen bringt.

Der Protottyp kommt mit einer Querschnittsfläche von 6,66 cm2 und einem cw-Wert von __ zeitgleich den Anforderungen des Wettbewerbs als auch den Ansprüchen in Sachen Aerodynamik, die das Team hinter Project Swance an sich selbst stellt, nach. Das sowohl nach vorne, als auch nach hinten abflachende Design garantiert dabei einen guten Rundumblick für den Fahrer, der sich nach Durchbrechen der Schallmauer nicht mehr nur auf sein Gehör verlassen kann.

Projekt Lightning von Thoralf und Tushar

Die Grazie einer Gazelle, der Stachel eines Skorpion.

Mit der Rennlegende McQueen aus dem beliebten Film Cars kommt jetzt das Design in die reale Welt. Sein überragendes Design wird nun ebenso hier die Aerodynamik revolutionieren und auf ganz neue Höchstwerte bringen.

Mit einer Querschnittfläche von 9,3cm2 und einer durchschnittlichen Kraft 0,076 Newton ergibt sich ein cw-Wert von __, welcher die Qualität dieses Designs nur noch weiter bestätigt.

QJ 22 LIGHTNING von Quentin Kobbelt und Jonas Freitag

Der QJ 22 Lightning hebt sich mit einer atemberaubenden violetten Farbgebung in Kombination mit seiner mattschwarzen Veredelung von dem Standard der Gegenwert ab. Er überzeugt vor allem mit seinem ikonischen Design und seine noch nie zuvor gesehene Interpretation eines Autos ist einmalig. Das spitze und doch elegante Aussehen führt zur einer aerodynamischen Performance und macht so das Fahrgefühl noch intensiver. Darüber hinaus sorgen nicht nur die markanten Blitze auf der Außenseite, die für Innovation und Zukunft stehen, sondern auch die hochkomplexen luxuriösen Felgen für einen unvergesslichen Fahrspaß. Nicht zuletzt stellen die beiden Rückspiegel eine komplette Neuheit auf dem Markt dar. Mit einer Querschnittsfläche von 9,6cm^2 und einem cw-Wert ____ kann der QJ 22 LIGHTNING definitiv mit der Konkurrenz mithalten.

Der QJ 22 LIGHTNING im Windkanal

Hummingbird von Caspar v. Campenhausen

Hummingbird setzt auf einen tiefen Bau, um Wirbel unter dem Auto zu vermeiden, sowie auf ein flaches und spitzes Heck, womit ein minimaler Luftwiderstand garantiert werden kann. Mit einer Querschnittsfläche von 8,5 cm^2 übte es trotzdem eine durchschnittliche Kraft von nur 0,08N auf das Messgerät aus und sicherte sich somit einen soliden 4. Platz.

Die Ergebnisse

Gruppen Durchschnittliche Kraft Querschnittsfläche (cm^2)Ranking (F/A)
Konstantin und Lorenz 0,076 N6,6 0.0115
Jonas und Quentin0,085 N9,60.0088
Thoralf und Tushar0,085 N9,30.0091
Caspar0, 08 N8,50.0094
Henrik0,09 N9,10.0099
Lasse und Ali 0,095 N9,50.1
Michael 0,096 N9,10.0105

ArchitekTour in die Römerstadt

Es gibt 26 (!) von Ernst May erbaute Siedlungen in Frankfurt und in einer davon, der Römerstadt, steht das „ernst-may-haus“. Hierhin führte uns unsere letzte ArchitekTour in diesem Halbjahr, welches ganz der Baukunst gewidmet war.

Das „ernst-may-haus“ ist ein Museum der besonderen Art: ein von der „ernst-may-gesellschaft“ erworbenes, akribisch restauriertes und öffentlich zugänglich gemachtes Gebäude, eine Art „Musterhaus“, welches die Ideenwelt des berühmten Frankfurter Architekten und Stadtplaner Ernst May erfahrbar macht.

Ernst May lebte vom 27. Juli 1886 bis zum 11. September 1970. Mit seinem Projekt „Neues Frankfurt“ wollte er ganz Frankfurt einen Schub in Richtung Moderne verpassen. Von 1925-1930 schuf er im Auftrag von Ludwig Landmann, welcher als Oberbürgermeister die damals katastrophale Wohnsituation in Frankfurt verbessern wollte, in kürzester Zeit ca. 12.000 Wohnungen, verteilt auf mehrere, neue Wohnsiedlungen. Sein Plan war es, einen riesigen Siedlungskranz um die überfüllte Altstadt von Frankfurt herum zu bauen. Unter anderem aufgrund der aufblühenden Chemiekonzerne und des starken Zuzugs von Arbeitern war Wohnraum in Frankfurt sehr begrenzt. Ernst May wollte, dass jeder ein gesundes Leben auf dem Land führen könne, ähnlich wie die Anhänger der Gartenstadtbewegung. So entstanden neben der Siedlung Römerstadt auch neue Siedlungen in Praunheim, am Bornheimer Hang und im Riederwald, um nur einige zu nennen. Aufgrund der Weltwirtschaftskrise 1929 konnte May seine Pläne nicht vollenden, da es einfach nicht mehr genug Geld gab, um seine Vorhaben zu finanzieren. Einige Projekte, wie z. B. die Gartenstadt in Goldstein konnten nicht mehr realisiert werden. Als die Nationalsozialisten dann später an die Macht kamen, verteufelten sie May‘s Arbeit, da sie nichts von der Moderne hielten. Doch mittlerweile sind die Frankfurter stolz auf Ernst May und die Warteliste für ein Häuschen in der Römerstadt ist lang. Im Jahr 2003 wurde schließlich die „ernst-may-gesellschaft“ gegründet, das „ernst-may-haus“ erworben und der aufwändige Rückbau begonnen.

Das Haus wurde im Inneren Stück für Stück freigelegt, sodass man die Originalfarben der Wände, der Tür- und Fensterrahmen rekonstruieren konnte. Auch die berühmte „Frankfurter Küche“, das Bad und die Wohnräume wurden wieder so eingerichtet und möbliert, wie sie ursprünglich ausgesehen haben könnten.

Die Exkursion war interessant und die Führung durch die Ehrenamtlichen sehr umfangreich und absolut empfehlenswert. Man hat viel über Ernst May und das „Neue Frankfurt“ gelernt.

Text: Jan W., Leistungskurs Kunst, Q3